
11 min read

Microsoft Sentinel

Deploy sentinel analytic rules with
bicep and PowerShell

Robbe Van den Daele
Feb 9, 2023 • 11 min read

Photo by James Harrison / Unsplash

Introduction

The problem
Manually enabling analytic rules takes a long time

Not all of the out-of-the-box rules are good

Keeping track of changes is a pain in the **s

Many more
Subscribe

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 1/23

https://hybridbrothers.com/tag/microsoftsentinel/
https://hybridbrothers.com/author/robbe/
https://unsplash.com/es/@jstrippa?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://unsplash.com/?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://hybridbrothers.com/
https://hybridbrothers.com/author/robbe/

Introduction
Managing a Microsoft Sentinel environment can get very complex,

especially when you are responsible for managing multiple environments

as MSSPs do. This is why Infrastructure as Code becomes very important.

It makes sure that your environments are consistent, easy to roll out, and

modular since you can standardize certain configurations over multiple

customers.

In this post, I will be talking about how I managed to roll out Microsoft

Sentinel analytic rules using Bicep and PowerShell. I used PowerShell so I

was able to deploy analytic rules based on the data connectors that were

enabled in the customer environments.

The problem
When you are an MSSP and want to manage multiple customers

consistently, you will quickly find out that using IaC is the only option you

have. A couple of issues I discovered when using the portal can be found in

this section.

Manually enabling analytic rules takes a long time

For example, when you are onboarding a new customer and are connecting

a data connector, you will want to enable the Out-Of-The-Box analytic

rules regarding this data connector. To do this, you will have to go to

analytic rules and filter on the data connector you just connected.

How I did it
Customer parameters

Analytic rule properties

Bicep code

Get current out of the box analytic rules

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 2/23

Once you have done this, you need to click on each analytic rule, go to the

'review and create page', and create the analytic rule. If Azure has a good

day, the portal refreshes after about three seconds and the rule is created.

Know that Azure can sometimes be a lot slower, which makes the waiting

process sometimes frustrating. After testing this process a couple of times,

I found out that enabling one analytic rule costs you four clicks
and about 25 seconds. This means that for a data connector like the

Azure Activity where 24 Out Of The Box rules are available, you will have

to click 96 times in the portal and need about 600 seconds (10
minutes). If you have an environment where 200 analytic rules are

enabled, this would take 800 clicks and 5000 seconds (83 minutes).
If you would use IaC to deploy these analytic rules, all of the analytic rules

would get rolled out in a matter of minutes. And even better, you can get a

coffee while you are waiting on the deployment to finish.

Not all of the out-of-the-box rules are good

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 3/23

When you try to enable a couple of analytic rules, you will find out that not

all analytic rules are working correctly. Some analytic rules have incorrect

entity mappings, incorrect queries, or just don’t fit your customer's needs.

Below you find for example the Out Of The Box rule called ‘Dev-0530 IOC

– July 2022’ which fails to validate for as long as I know the rule. In this

case, it is because of the incorrect query mapping.

Another example is the ‘Explicit MFA Deny’ rule. This rule creates an

incident when a user clicks on the deny button in their authenticator app

instead of clicking the approve button. In a lot of environments, you will

find out that this will generate a lot of false positives. This is why you

probably want to set a threshold, where an incident is only created when a

user does this multiple times in a certain time frame.

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 4/23

You are probably wondering how IaC is going to fix this issue. If you make

these changes all the time in multiple environments, it would be much

more efficient if you make this change once, describe it as a template, and

deploy this template for every customer that wants to use this rule. This

way customers have all of the fine-tuning you already did as an MSSP at

the very beginning of the Sentinel setup. If you fail to do this, you probably

have a lot of false positives in a new deployment that you already

encountered in other customer environments.

Keeping track of changes is a pain in the **s

When fine-tuning analytic rules in the portal, it is very hard to keep track

of which analytic rules have custom fine-tuning, when you did it, and what

changed compared to the older version. When you use IaC and couple a

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 5/23

GitHub or Azure DevOps repository to your project, you have much easier

tracking of which rules are changed and what is changed. You are also able

to organize your content like you want, making it easy to find analytic rules

that are finetuned for one specific customer for example.

Many more

There are many more reasons why you would want to migrate your

analytic rules to a DevOps environment:

Creating approval flows using pipelines

Do additional analytic rule checking before deployment

Creating conditions when deploying analytic rules

Using a custom auto-update script

Auto-deploy all analytic rules based on data connector

How I did it
To be honest, I was not able to deploy sentinel analytic rules in the way I

wanted just by using bicep. I created a PowerShell script that generates

bicep parameter files based on the customer's needs and used those

parameter files as input to my bicep scripts. The functional diagram of the

code can be found below:

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 6/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 7/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 8/23

The PowerShell script makes sure that based on the data connector the

customer has, all the related analytic rules are rolled out. In some cases,

certain analytic rules don’t need to be deployed although there is a related

data connector, which is why we use an exclusion file. The overwrites file

will contain analytic rules that have customer-specific finetuning.

Customer parameters

I defined a couple of customer-specific parameters that are needed for the

deployment. These are:

resourcegroupName – Resource group of Sentinel workspace

workspaceName – Sentinel workspace name

overwritesPath – This is the path to the folder that contains all the

overwrite rules of a customer.

rulesParameterFile – The file that contains the data connectors

the customer has

ruleExclusionsFile – The file that contains rule IDs that do not

need to be deployed

location – The location of the bicep deployment

All these parameters are expected in the script to be able to start the

deployment.

Rules Parameter File

The Rule Parameter File is a customer-specific file that contains all of the

possible data connectors together with a property that shows if the data

connector is enabled. It is a JSON Array with multiple JSON Objects, that I

have built in the following schema:

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 9/23

I based the creation of this file on the following GitHub page:

https://github.com/Azure/Azure-

Sentinel/blob/master/.script/tests/detectionTemplateSchemaValidation/

ValidConnectorIds.json . Here you can find all of the valid connector ids

that are in Sentinel.

Rule Exclusion File

[
 {“id”:”dataconnector1”,”enable”:true},
 {“id”:”dataconnector2”,”enable”:false},
 …
]

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 10/23

https://github.com/Azure/Azure-Sentinel/blob/master/.script/tests/detectionTemplateSchemaValidation/ValidConnectorIds.json?ref=hybridbrothers.com
https://github.com/Azure/Azure-Sentinel/blob/master/.script/tests/detectionTemplateSchemaValidation/ValidConnectorIds.json?ref=hybridbrothers.com
https://github.com/Azure/Azure-Sentinel/blob/master/.script/tests/detectionTemplateSchemaValidation/ValidConnectorIds.json?ref=hybridbrothers.com

The Rule Exclusion File is a file that contains the analytic rule names (in

fact, these are GUID ids but more on that later) that should not be

deployed, even though it contains the data connector ids that the customer

uses in their environment.

This was needed since we want to deploy analytic rules that are based on

the Threat Intelligence data connector. There are a couple of rules related

to this connector, that also query tables of data connectors a customer does

not need. Since all analytic rules are tested and validated before

deployment, analytic rules with non-existing tables forced the deployment

to fail. To solve this, we add the analytic rule names that do not need to be

deployed in this file.

Overwrites Path

In the overwrites path we store all of the analytic rules that contain

customer-specific finetuning. By default, our script will deploy all out-of-

the-box analytic rules that are present. When an analytic rule needs

specific finetuning, we place them in this overwrite path and deploy these

rules after the OOTB deployments. It is important to note that the
name of the analytic rules need to be the same in the OOTB path
and the Overwrites path for the rule to be overwritten. More on

how to do this is described in the following chapters.

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 11/23

Analytic rule properties

We talked a couple of times about the path where OOTB rules and

Overwrite rules are kept. But how are analytic rules described and what

format are they in?

When you export an analytic rule via the Azure portal, you will find out

that the analytic rule is described in JSON format. If you have some

experience with ARM, you will even notice that it is in fact an ARM

template!

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 12/23

You can see in the template above that the ARM template has a property

called “resources”. This is a JSON Array that contains all of the exported

analytic rules you selected in the Azure Portal. Each JSON object in this

array is the JSON representation of an analytic rule, which means you

eventually only need these JSON Objects.

Now that you have a JSON export of the analytic rules, it is time to take a

look at a couple of properties. There are a lot of properties used to describe

an analytic rule. There in fact too much to talk about. If you want to learn

more about all of the properties, you can visit the SecurityInsights alert

rules documentation. However, below you will find an explanation of the

most important analytic rule properties.

Id – The ID field is not really used during a bicep deployment of

the analytic rule. It just forms the unique ID together with your

subscription and workspace when you export the rule to an ARM

template. You can ignore this property.

Name – The name field is a GUID and is the name of your analytic

rule. It is unique in a Sentinel workspace. When you deploy an

analytic rule to your environment where there is already a rule

with the same name, the analytic rule will be overwritten. You can

also find the name of the analytic rule in the ‘id’ field in the Azure

Portal (I know, pretty complex right)

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 13/23

https://learn.microsoft.com/en-us/azure/templates/Microsoft.SecurityInsights/2022-10-01-preview/alertrules?pivots=deployment-language-bicep&ref=hybridbrothers.com
https://learn.microsoft.com/en-us/azure/templates/Microsoft.SecurityInsights/2022-10-01-preview/alertrules?pivots=deployment-language-bicep&ref=hybridbrothers.com

alertRuleTemplateName – This property contains the name of the

template on which the analytic rule is based. This is not a required

property, since you can always create custom analytic rules from

scratch. This field will be important if you want to track analytic

rule versions with the latest template version.

templateVersion – The template version field contains the version

of the template on which the analytic rule is based. When this

version is lower than the latest version existing for the template,

the analytic rule will get the ‘update available’ tag.

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 14/23

requiredDataConnectors – This property is an array that contains

JSON objects regarding the data connectors the analytic rule uses.

These objects contains the connectorId field, and the dataTypes

field. The connectorId field is the field that we check to see if an

analytic rule needs to be deployed for a customer, which means

that these are the fields that are present in our Rules Parameter

File!

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 15/23

All the other properties that can be found in the analytic rule template are

the same properties you can find in the portal. Again, if you want more

information about the other properties, I recommend checking the

SecurityInsights alert rules documentation.

Bicep code

Assuming you already know something about bicep, you can probably

imagine that we need two bicep files to deploy analytic rules. One bicep file

is scoped at subscription level, the other file is scoped at the resource

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 16/23

https://learn.microsoft.com/en-us/azure/templates/Microsoft.SecurityInsights/2022-10-01-preview/alertrules?pivots=deployment-language-bicep&ref=hybridbrothers.com

group that contains the Sentinel log analytics workspace. I named the first

bicep file main.bicep, and the second bicep file deploy-rules.bicep.

Az-Context

Before you can start deploying bicep, you first need the set your

environment for the deployment. You can use the Connect-AzAccount

PowerShell command to log in to your tenant and choose the subscription

where your sentinel environment resides.

main.bicep

The main.bicep file is the file that gets started by the deployment. In this

file we do a couple of steps, which are the following:

1. Get the required parameters

a. Resource group name

b. Sentinel workspace name

2. Read the analytic rules JSON files via the loadJsonContent

function (these are the files with the analytic rule properties in

JSON that you should generate via powershell)

3. Set the target scope to subscription level

4. Get the existing resource group of the sentinel workspace

5. Deploy the OOTB analytic rules (a reference to deploy-rules.bicep)

6. Deploy the Overwrite analytic rules (a reference to deploy-

rules.bicep)

//--------------------
// Parameters
//--------------------
@description('Resource group name where the Sentinel workspace resides')
param resourceGroupName string

@description('Log analytics worksapce of Sentinel')

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 17/23

The command that is used to start this file is

 

param workspaceName string

//--------------------
// Variables
//--------------------
var ootbRules = loadJsonContent('deployments/analytic-rules.json').resources
var overwriteRules = loadJsonContent('deployments/overwrite-rules.json').resources

//--------------------
// TragetScope
//--------------------
targetScope = 'subscription'

//--------------------
// Code
//--------------------
// Get existing resource group
resource sentinelResourceGroup 'Microsoft.Resources/resourceGroups@2021-04-01' exist
 name: resourceGroupName
}

// Deploy analytic rules
module deployOOTBRules 'deploy-rules.bicep' = {
 scope: sentinelResourceGroup
 name: 'deployOOTBRules'
 params: {
 workspaceName: workspaceName
 rules: ootbRules
 }
}

// Deploy overwrite rules
module deployOverwriteRules 'deploy-rules.bicep' = {
 scope: sentinelResourceGroup
 name: 'deployOverwriteRules'
 dependsOn: [deployOOTBRules]
 params: {
 workspaceName: workspaceName
 rules: overwriteRules
 }
}

Show on Github

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 18/23

https://github.com/HybridBrothers/Hybrid-Brothers-Blogs/blob/main/sentinel-using-bicep-and-powershell/main.bicep

This command will start the main.bicep file, with a file params.json as

parameter file. The parameter file contains the parameters that we set in

step 1, which are the resource group and sentinel workspace name. If you

build a PowerShell script like I did to start the bicep deployment, this file

should be generated in your PowerShell script (you can set the sentinel

workspace and resource group name as required parameters in

PowerShell).

deploy-rules.bicep

The deploy-rules.bicep file is eventually the file where analytic rules get

deployed. Below you find the steps of the bicep file:

1. We first read the parameters for the deployment

a. Sentinel workspace name

b. Analytic rules in array format

 

New-AzSubscriptionDeployment -TemplateFile "main.bicep" -TemplateParameterFile ".\de

 

$bicepParameterFile = @"
 {
 "`$schema": "https://schema.management.azure.com/schemas/2015-01-01/deployme
 "contentVersion": "1.0.0.0",
 "parameters": {
 "resourceGroupName": {
 "value": "$resourcegroupName"
 },
 "workspaceName": {
 "value": "$workspaceName"
 }
 }
 }
"@
$bicepParameterFile | Out-File ".\deployments\params.json"

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 19/23

2. Get the existing sentinel workspace by providing the workspace

name

3. Deploying the analytic rules by using a for-loop. Here we can get

the required properties for every rule which are

a. Name

b. Kind

c. Properties (the object that contains the analytic rule properties)

Get current out of the box
analytic rules
Below you will find a script that gets all of the out-of-the-box analytic

rules. The script expects the resource group name of your sentinel

 

//--------------------
// Parameters
//--------------------
param workspaceName string
param rules array

//--------------------
// Code
//--------------------
// Get the existing la
resource sentinelWorkspace 'Microsoft.OperationalInsights/workspaces@2022-10-01' exi
 name: workspaceName
}

// Deploy rules
resource analyticRuleDeployment 'Microsoft.SecurityInsights/alertRules@2022-10-01-pr
 name: rule.name
 scope: sentinelWorkspace
 kind: rule.kind
 properties: rule.properties
}]

Show on Github

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 20/23

https://github.com/HybridBrothers/Hybrid-Brothers-Blogs/blob/main/sentinel-using-bicep-and-powershell/deploy-rules.bicep

workspace and the name of the log analytics workspace. It then created a

bearer token based on your az-context parameters (so make sure your

context is correct). In the next step, the script gets all the template rules by

using the Azure Management API and adds the required properties that

are needed for a bicep deployment for each analytic rule (the properties of

a template analytic rule are not the same as the properties you find in an

exported existing analytic rule). Finally, the script saves the analytic rules

in JSON format in different folders based on the alert rule types.

[CmdletBinding()]
param (
 [Parameter (Mandatory=$true)]
 [string] $resourceGroupName,
 [Parameter (Mandatory=$true)]
 [string] $workspaceName
)

Set parameters

Get the context
$context = Get-AzContext
$azureProfile = [Microsoft.Azure.Commands.Common.Authentication.Abstractions.AzureRm
$profileClient = New-Object -TypeName Microsoft.Azure.Commands.ResourceManager.Commo
Save auth header and subscription
$token = $profileClient.AcquireAccessToken($context.Subscription.TenantId)
$authHeader = @{
 'Content-Type' = 'application/json'
 'Authorization' = 'Bearer ' + $token.AccessToken
}
$SubscriptionId = $context.Subscription.Id
Create body
$body = @{
 "subscriptions" = @($SubscriptionId)
}
Generate URL
$uri = "https://management.azure.com/subscriptions/$SubscriptionId/resourceGroups/$r

Save templates

Get templates and convert them

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 21/23

 

$verdict = Invoke-RestMethod -Uri $uri -Method Get -Headers $authHeader -Body $body
$templates = $verdict.value | ConvertTo-Json -Depth 10 | ConvertFrom-Json
Loop through each template
$templates | ForEach-Object {
 # Replace illegal characters
 $displayName = $_.properties.displayName
 if ($displayName -match '/') {
 $displayname = $displayName.replace('/', ' or ') | Out-Null
 }
 # Add required parameter that is not included in template
 $_.properties | Add-Member -NotePropertyName "suppressionDuration" -NoteProperty
 $_.properties | Add-Member -NotePropertyName "suppressionEnabled" -NotePropertyV
 $_.properties | Add-Member -NotePropertyName "enabled" -NotePropertyValue $true
 $_.properties | Add-Member -NotePropertyName "alertRuleTemplateName" -NoteProper
 $_.properties | Add-Member -NotePropertyName "templateVersion" -NotePropertyValu
 # Save correct kind under correct folder
 if ($_.kind -eq "MLBehaviorAnalytics") { $_ | ConvertTo-Json -Depth 10 | Out-Fil
 elseif ($_.kind -eq "Scheduled") { $_ | ConvertTo-Json -Depth 10 | Out-File -For
 elseif ($_.kind -eq "ThreatIntelligence") { $_ | ConvertTo-Json -Depth 10 | Out-
 elseif ($_.kind -eq "MicrosoftSecurityIncidentCreation") { $_ | ConvertTo-Json -
 elseif ($_.kind -eq "Fusion") { $_ | ConvertTo-Json -Depth 10 | Out-File -Force
 elseif ($_.kind -eq "NRT") { $_ | ConvertTo-Json -Depth 10 | Out-File -Force -Fi
 else { $_ | ConvertTo-Json -Depth 10 | Out-File -Force -FilePath "$($displayName
}

Show on Github

Microsoft Defender portal for SecOps analysis and response

ft Defender XDR

Signals

Microsoft
Entra ID

Protection

Microsoft
Defender
for Cloud

Microsoft
Entra ID

osoft
der for
ntity

emises
S and
 FS

Microsoft
Defender for
Cloud Apps

Third-party
SaaS and
PaaS apps

Other SaaS
and PaaS

apps

Microsoft
Defender for

Office 365

Microsoft
365

Microsoft
Defender for

Endpoint

Endpoints
(devices) with

Intune

Microsoft
Defender for

IoT

Microsoft
Defender

Vulnerability
Management

Microsoft
Defender

Threat
Intelligence

Microsoft
Security
Copilot

Azure Services
SQL
Storage
Network Traffic
Industrial IoT
Azure App Services
Azure Arc-enabled
resources

Server VMs
Azure Storag
Azure DNS
Azure Resou
Manager
Azure Key V
Azure App S

Multic

Third-pa
partn

SIEM data

Microsoft
Sentinel

Transition
from
Microsoft

Detecting
non-
privileged

MDE
Device
Discovery -

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 22/23

https://github.com/HybridBrothers/Hybrid-Brothers-Blogs/blob/main/sentinel-using-bicep-and-powershell/get-ootb-analytic-rules.ps1
https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/

Jul 4, 2025 12 min read

Apr 26,

2025

16 min

read

Mar 19,

2025

6 min

read

Sentinel to
Defender
XDR -
Practical
challenges
Introduction
Microsoft
announced on the…

Windows
Hello
abuse
Introduction I
recently followed a
live session of Dirk…

Improving
the
monitored
network
page
Introduction This
blogpost is
probably the first …

Hybrid Brothers © 2025

Powered by Ghost

Sign up Privacy policy

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 23/23

https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/
https://hybridbrothers.com/
https://ghost.org/
https://hybridbrothers.com/privacy-policy/

