9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

H3

11 min read

Microsoft Sentinel

Deploy sentinel analytic rules with
bicep and PowerShell

@. Robbe Van den Daele
", Feb9,2023 + 11 min read

Photo by James Harrison / Unsplash

Introduction

The problem

Manually enabling analytic rules takes a long time
Not all of the out-of-the-box rules are good
Keeping track of changes is a pain in the **s

Many more

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 1/23

https://hybridbrothers.com/tag/microsoftsentinel/
https://hybridbrothers.com/author/robbe/
https://unsplash.com/es/@jstrippa?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://unsplash.com/?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://hybridbrothers.com/
https://hybridbrothers.com/author/robbe/

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell
How I did it

Customer parameters
Analytic rule properties
Bicep code

Get current out of the box analytic rules

Introduction

Managing a Microsoft Sentinel environment can get very complex,
especially when you are responsible for managing multiple environments
as MSSPs do. This is why Infrastructure as Code becomes very important.
It makes sure that your environments are consistent, easy to roll out, and
modular since you can standardize certain configurations over multiple
customers.

In this post, I will be talking about how I managed to roll out Microsoft
Sentinel analytic rules using Bicep and PowerShell. I used PowerShell so I
was able to deploy analytic rules based on the data connectors that were

enabled in the customer environments.

The problem

When you are an MSSP and want to manage multiple customers
consistently, you will quickly find out that using IaC is the only option you
have. A couple of issues I discovered when using the portal can be found in

this section.

Manually enabling analytic rules takes a long time

For example, when you are onboarding a new customer and are connecting
a data connector, you will want to enable the Out-Of-The-Box analytic
rules regarding this data connector. To do this, you will have to go to

analytic rules and filter on the data connector you just connected.

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 2/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

Microsoft Sentinel | Analytics

- Rules by severity
© Ovenview Previen 140 #R More content at W DY SIVertly

R k! content hub
el BHigh (29 Mediuen (95) Low [21) Informational (0)

Active rules Rule templates Anomalies

Data Sources : Azure Activity W Add filter

ity Madrie Risle type Data soudees Tactics Techniguies SOURCE Rame

o v
& e

Once you have done this, you need to click on each analytic rule, go to the
'review and create page', and create the analytic rule. If Azure has a good
day, the portal refreshes after about three seconds and the rule is created.
Know that Azure can sometimes be a lot slower, which makes the waiting
process sometimes frustrating. After testing this process a couple of times,
I found out that enabling one analytic rule costs you four clicks
and about 25 seconds. This means that for a data connector like the
Azure Activity where 24 Out Of The Box rules are available, you will have
to click 96 times in the portal and need about 600 seconds (10
minutes). If you have an environment where 200 analytic rules are
enabled, this would take 800 clicks and 5000 seconds (83 minutes).
If you would use IaC to deploy these analytic rules, all of the analytic rules
would get rolled out in a matter of minutes. And even better, you can get a

coffee while you are waiting on the deployment to finish.

Not all of the out-of-the-box rules are good

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 3/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

When you try to enable a couple of analytic rules, you will find out that not
all analytic rules are working correctly. Some analytic rules have incorrect
entity mappings, incorrect queries, or just don’t fit your customer's needs.
Below you find for example the Out Of The Box rule called ‘Dev-0530 IOC
— July 2022’ which fails to validate for as long as I know the rule. In this

case, it is because of the incorrect query mapping.

Analytics rule wizard - Create new rule from template

"3 Validation failed. Required information is missing or not valid.

General ﬂSer rule lagic ncident settings Automated response Review and create

Analytics rule details

Mame Dev-0530 10C - July 2022
yescription dentifies a 10C match related to Dev-0530 actor across various data sources
Tactics and techmiques B impact
T1486 - Data Encrypted for Impact
Severity I High
Status Enabled

Analytics rule settings

Another example is the ‘Explicit MFA Deny’ rule. This rule creates an
incident when a user clicks on the deny button in their authenticator app
instead of clicking the approve button. In a lot of environments, you will
find out that this will generate a lot of false positives. This is why you
probably want to set a threshold, where an incident is only created when a

user does this multiple times in a certain time frame.

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 4/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

@ Explicit MFA Deny

Medium #¢ Gallery Content Scheduled
Severity Content source Rule Type
Description

User explicitly denies MFA push, indicating that login was not expected
and the account's password may be compromised.

Data sources

Azure Active Directory

¥* SigninLogs --

Wk Auditlogs --

pADMNoninteractiveUserSigninLogs --
W# AADServicePrincipalSigninlogs --
e AADManagedidentitySigninLogs --
Wi AADProvisioninglogs --

¥# ADFSSigninLogs --

we AADUserRiskEvents --

W+ AADRiskylUsers --

o MetworkaccessTraffic --

9# AADRiskyServicePrincipals --

e ppDServicePrincipalRiskEvents --

Tactics and technigues

You are probably wondering how IaC is going to fix this issue. If you make
these changes all the time in multiple environments, it would be much
more efficient if you make this change once, describe it as a template, and
deploy this template for every customer that wants to use this rule. This
way customers have all of the fine-tuning you already did as an MSSP at
the very beginning of the Sentinel setup. If you fail to do this, you probably
have a lot of false positives in a new deployment that you already

encountered in other customer environments.

Keeping track of changes is a pain in the **s

When fine-tuning analytic rules in the portal, it is very hard to keep track
of which analytic rules have custom fine-tuning, when you did it, and what

changed compared to the older version. When you use IaC and couple a

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 5/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

GitHub or Azure DevOps repository to your project, you have much easier
tracking of which rules are changed and what is changed. You are also able
to organize your content like you want, making it easy to find analytic rules

that are finetuned for one specific customer for example.

Explicit MFA Denyjson .1‘ 1) View

Many more

There are many more reasons why you would want to migrate your

analytic rules to a DevOps environment:

» Creating approval flows using pipelines

e Do additional analytic rule checking before deployment
e Creating conditions when deploying analytic rules

e Using a custom auto-update script

e Auto-deploy all analytic rules based on data connector

How | did it

To be honest, I was not able to deploy sentinel analytic rules in the way I
wanted just by using bicep. I created a PowerShell script that generates
bicep parameter files based on the customer's needs and used those
parameter files as input to my bicep scripts. The functional diagram of the

code can be found below:

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 6/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 7123

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

‘ Initialize variables

i

|'. Read customer |
| parameters |

l Read overarite rules

i Read OOTE and | (Read customer overwrite |
rules and sawe for
custom rules

deployment
Read data connectors l
Read environment settings
Loop through
p a <
each rule
Mo maich

heck related d
connector T

Read exclusion list |
Match

v

Check if rule in
exclusions

—

No

v

Save rule for '
deployment

l

Loop end

l

‘ Merge rules }4

l

"' Start bicep }‘

deployment

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 8/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

The PowerShell script makes sure that based on the data connector the
customer has, all the related analytic rules are rolled out. In some cases,
certain analytic rules don’t need to be deployed although there is a related
data connector, which is why we use an exclusion file. The overwrites file

will contain analytic rules that have customer-specific finetuning.

Customer parameters

I defined a couple of customer-specific parameters that are needed for the

deployment. These are:

» resourcegroupName — Resource group of Sentinel workspace
o workspaceName — Sentinel workspace name

o overwritesPath — This is the path to the folder that contains all the

overwrite rules of a customer.

e rulesParameterFile — The file that contains the data connectors

the customer has

e ruleExclusionsFile — The file that contains rule IDs that do not

need to be deployed

e location — The location of the bicep deployment

All these parameters are expected in the script to be able to start the

deployment.

Rules Parameter File

The Rule Parameter File is a customer-specific file that contains all of the
possible data connectors together with a property that shows if the data
connector is enabled. It is a JSON Array with multiple JSON Objects, that I

have built in the following schema:

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 9/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

{“id”:”dataconnectorl”,”enable”:true},

“id”:”dataconnector2”,”enable”:false},

* . enable”;

I based the creation of this file on the following GitHub page:
https://github.com/Azure/Azure-
Sentinel/blob/master/.script/tests/detectionTemplateSchemaValidation/
ValidConnectorlds.json . Here you can find all of the valid connector ids

that are in Sentinel.

Rule Exclusion File

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/

10/23

https://github.com/Azure/Azure-Sentinel/blob/master/.script/tests/detectionTemplateSchemaValidation/ValidConnectorIds.json?ref=hybridbrothers.com
https://github.com/Azure/Azure-Sentinel/blob/master/.script/tests/detectionTemplateSchemaValidation/ValidConnectorIds.json?ref=hybridbrothers.com
https://github.com/Azure/Azure-Sentinel/blob/master/.script/tests/detectionTemplateSchemaValidation/ValidConnectorIds.json?ref=hybridbrothers.com

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

The Rule Exclusion File is a file that contains the analytic rule names (in
fact, these are GUID ids but more on that later) that should not be
deployed, even though it contains the data connector ids that the customer

uses in their environment.

This was needed since we want to deploy analytic rules that are based on
the Threat Intelligence data connector. There are a couple of rules related
to this connector, that also query tables of data connectors a customer does
not need. Since all analytic rules are tested and validated before
deployment, analytic rules with non-existing tables forced the deployment
to fail. To solve this, we add the analytic rule names that do not need to be

deployed in this file.

Overwrites Path

In the overwrites path we store all of the analytic rules that contain
customer-specific finetuning. By default, our script will deploy all out-of-
the-box analytic rules that are present. When an analytic rule needs
specific finetuning, we place them in this overwrite path and deploy these
rules after the OOTB deployments. It is important to note that the
name of the analytic rules need to be the same in the OOTB path
and the Overwrites path for the rule to be overwritten. More on

how to do this is described in the following chapters.

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 11/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

Analytic rule properties

We talked a couple of times about the path where OOTB rules and
Overwrite rules are kept. But how are analytic rules described and what

format are they in?

When you export an analytic rule via the Azure portal, you will find out
that the analytic rule is described in JSON format. If you have some

experience with ARM, you will even notice that it is in fact an ARM

template!
Create) Refresh b Analytics efficiency workbook & Disable [4] Delete ' import] '— Export & Guides & Feedback
- Rules by severity
141 p5 More content at EEEEEEEE— ¥
4| Content hub
Active rules 1 High (30) Medium (95) Low (21) Informational (0)
Active rules Rule templates Anomalies
W Add filter
| | Severity MName Rule type Status Tactics Techniques Source name Last Modified |
[| I High Known Barium IP U scheduled Enabled % Command .. Gallery Content 1/12/2023, 8:45:56 PM

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 12/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

You can see in the template above that the ARM template has a property
called “resources”. This is a JSON Array that contains all of the exported
analytic rules you selected in the Azure Portal. Each JSON object in this
array is the JSON representation of an analytic rule, which means you

eventually only need these JSON Objects.

Now that you have a JSON export of the analytic rules, it is time to take a
look at a couple of properties. There are a lot of properties used to describe
an analytic rule. There in fact too much to talk about. If you want to learn
more about all of the properties, you can visit the SecurityInsights alert
rules documentation. However, below you will find an explanation of the

most important analytic rule properties.

e Id — The ID field is not really used during a bicep deployment of
the analytic rule. It just forms the unique ID together with your
subscription and workspace when you export the rule to an ARM

template. You can ignore this property.

e Name — The name field is a GUID and is the name of your analytic
rule. It is unique in a Sentinel workspace. When you deploy an
analytic rule to your environment where there is already a rule
with the same name, the analytic rule will be overwritten. You can
also find the name of the analytic rule in the ‘id’ field in the Azure

Portal (I know, pretty complex right)

“"name” :

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 13/23

https://learn.microsoft.com/en-us/azure/templates/Microsoft.SecurityInsights/2022-10-01-preview/alertrules?pivots=deployment-language-bicep&ref=hybridbrothers.com
https://learn.microsoft.com/en-us/azure/templates/Microsoft.SecurityInsights/2022-10-01-preview/alertrules?pivots=deployment-language-bicep&ref=hybridbrothers.com

9/24/25, 10:33 PM

Deploy sentinel analytic rules with bicep and PowerShell

1

I-\\
L) Known Barium IP

High # Custom Enabled
Seventy Content source Status

beeT2aPe-2e34-409C-boRa-c0906 502063 I
dentifies 3 match across vanous data feeds for 1P 10Cs related to the
Banum actnaty group
References: hilp MW U TICE. OV ORAS PR i en - internation

'_, Command and Contral (0)

let IPList = dynamic([~216.24.185.74", "187.175.18%.1
"199.19.118. 2487, “187.148.138.176", "154.212.129.2
*149.28.158.195", "108.561.214.194", “144.202.98.193
"45.61.136.27, T176.122.162.149", "192.3.88.245%, 7
248.18.184%, "65.49.192.74", "156.255.2.154",
"107.182.24.78". "176.122.188.254". "192.161.161.19

m Compare with template

o alertRuleTemplateName — This property contains the name of the

template on which the analytic rule is based. This is not a required

property, since you can always create custom analytic rules from

scratch. This field will be important if you want to track analytic

rule versions with the latest template version.

"alertRuleTemplateName":

e templateVersion — The template version field contains the version

of the template on which the analytic rule is based. When this

version is lower than the latest version existing for the template,

the analytic rule will get the ‘update available’ tag.

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/

14/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

"templateVersion™:

Template name

Known Barium IP

Latest template version available

1.3.1

e requiredDataConnectors — This property is an array that contains

JSON objects regarding the data connectors the analytic rule uses.

These objects contains the connectorlId field, and the dataTypes
field. The connectorld field is the field that we check to see if an
analytic rule needs to be deployed for a customer, which means
that these are the fields that are present in our Rules Parameter
File!

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/

15/23

9/24/25, 10:33 PM

All the other properties that can be found in the analytic rule template are
the same properties you can find in the portal. Again, if you want more

information about the other properties, I recommend checking the

Deploy sentinel analytic rules with bicep and PowerShell

requiredDataConnectors™:

I
L

“connectorlId”:
“"dataTypes™:

wiceInfo”

“connectorId”:
"dataTypes™:

e b= &

Irity”,"enable”:

‘. enable”:

wreatProtection”, "enable™:

2cUTPP", "enable™: -
os™ "enable”: },
dit"”,"enable”:
‘,"enable”:

SecurityInsights alert rules documentation.

Bicep code

Assuming you already know something about bicep, you can probably
imagine that we need two bicep files to deploy analytic rules. One bicep file

is scoped at subscription level, the other file is scoped at the resource

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/

J 2

n","enable":

16/23

https://learn.microsoft.com/en-us/azure/templates/Microsoft.SecurityInsights/2022-10-01-preview/alertrules?pivots=deployment-language-bicep&ref=hybridbrothers.com

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

group that contains the Sentinel log analytics workspace. I named the first

bicep file main.bicep, and the second bicep file deploy-rules.bicep.

Az-Context

Before you can start deploying bicep, you first need the set your
environment for the deployment. You can use the Connect-AzAccount
PowerShell command to log in to your tenant and choose the subscription

where your sentinel environment resides.

main.bicep

The main.bicep file is the file that gets started by the deployment. In this

file we do a couple of steps, which are the following:

1. Get the required parameters
a. Resource group name

b. Sentinel workspace name

2. Read the analytic rules JSON files via the loadJsonContent
function (these are the files with the analytic rule properties in

JSON that you should generate via powershell)
Set the target scope to subscription level
Get the existing resource group of the sentinel workspace

Deploy the OOTB analytic rules (a reference to deploy-rules.bicep)

AN L S

Deploy the Overwrite analytic rules (a reference to deploy-

rules.bicep)

@description('Resource group name where the Sentinel workspace resides')
param resourceGroupName string

@description('Log analytics worksapce of Sentinel')

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/

17/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

param workspaceName string

var ootbRules = loadJsonContent('deployments/analytic-rules.json').resources
var overwriteRules = loadJsonContent('deployments/overwrite-rules.json').resources

// Get existing resource group
resource sentinelResourceGroup 'Microsoft.Resources/resourceGroups@2021-04-01"' exis
name: resourceGroupName

// Deploy analytic rules
module deployOOTBRules 'deploy-rules.bicep' = {
scope: sentinelResourceGroup
name: 'deployOOTBRules'
params: {
workspaceName: workspaceName
rules: ootbRules

// Deploy overwrite rules
module deployOverwriteRules 'deploy-rules.bicep' = {
scope: sentinelResourceGroup
name: 'deployOverwriteRules'
dependsOn: [deployOOTBRules]
params: {
workspaceName: workspaceName
rules: overwriteRules

Show on Github

5. __--—.".—..OO__________________________J >

The command that is used to start this file is

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 18/23

https://github.com/HybridBrothers/Hybrid-Brothers-Blogs/blob/main/sentinel-using-bicep-and-powershell/main.bicep

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

New-AzSubscriptionDeployment -TemplateFile "main.bicep" -TemplateParameterFile ".\d

4 G >

This command will start the main.bicep file, with a file params.json as
parameter file. The parameter file contains the parameters that we set in
step 1, which are the resource group and sentinel workspace name. If you
build a PowerShell script like I did to start the bicep deployment, this file
should be generated in your PowerShell script (you can set the sentinel

workspace and resource group name as required parameters in
PowerShell).

$bicepParameterFile = @"

{
"“$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploym
"contentVersion": "1.0.0.0",
"parameters": {
"resourceGroupName": {
"value": "$resourcegroupName"

}s

"workspaceName": {

"value": "$workspaceName"

e

$bicepParameterFile | Out-File ".\deployments\params.json"

X >

deploy-rules.bicep

The deploy-rules.bicep file is eventually the file where analytic rules get
deployed. Below you find the steps of the bicep file:

1. We first read the parameters for the deployment
a. Sentinel workspace name

b. Analytic rules in array format

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 19/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

2. Get the existing sentinel workspace by providing the workspace

name

3. Deploying the analytic rules by using a for-loop. Here we can get
the required properties for every rule which are
a. Name
b. Kind

c. Properties (the object that contains the analytic rule properties)

param workspaceName string

param rules array

// Get the existing la
resource sentinellWorkspace 'Microsoft.OperationalInsights/workspaces@2022-10-01"' ex
name: workspaceName

// Deploy rules
resource analyticRuleDeployment 'Microsoft.SecurityInsights/alertRules@2022-10-01-p
name: rule.name
scope: sentinelWorkspace
kind: rule.kind
properties: rule.properties

}]
Show on Github

Get current out of the box
analytic rules

Below you will find a script that gets all of the out-of-the-box analytic

rules. The script expects the resource group name of your sentinel

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 20/23

https://github.com/HybridBrothers/Hybrid-Brothers-Blogs/blob/main/sentinel-using-bicep-and-powershell/deploy-rules.bicep

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

workspace and the name of the log analytics workspace. It then created a
bearer token based on your az-context parameters (so make sure your
context is correct). In the next step, the script gets all the template rules by
using the Azure Management API and adds the required properties that
are needed for a bicep deployment for each analytic rule (the properties of
a template analytic rule are not the same as the properties you find in an
exported existing analytic rule). Finally, the script saves the analytic rules

in JSON format in different folders based on the alert rule types.

[CmdletBinding()]
param (
[Parameter (Mandatory=$true)]
[string] $resourceGroupName,
[Parameter (Mandatory=$true)]
[string] $workspaceName

Get the context
$context = Get-AzContext
$azureProfile = [Microsoft.Azure.Commands.Common.Authentication.Abstractions.AzureR
$profileClient = New-Object -TypeName Microsoft.Azure.Commands.ResourceManager.Comm
Save auth header and subscription
$token = $profileClient.AcquireAccessToken($context.Subscription.TenantId)
$authHeader = @{

'Content-Type' = 'application/json'

'Authorization' = 'Bearer ' + $token.AccessToken
}
$SubscriptionId = $context.Subscription.Id
Create body
$body = @{
"subscriptions" = @($SubscriptionId)

}

Generate URL

$uri = "https://management.azure.com/subscriptions/$SubscriptionId/resourceGroups/$
S

Save templates

B e -

Get templates and convert them

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 21/23

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

$verdict = Invoke-RestMethod -Uri $uri -Method Get -Headers $authHeader -Body $body
$templates = $verdict.value | ConvertTo-Json -Depth 10 | ConvertFrom-Json
Loop through each template
$templates | ForEach-Object {

Replace illegal characters

$displayName = $_.properties.displayName

if ($displayName -match '/') {

$displayname = $displayName.replace('/', ' or ') | Out-Null

}

Add required parameter that is not included in template

$_.properties | Add-Member -NotePropertyName "suppressionDuration" -NotePropert:

$_.properties | Add-Member -NotePropertyName "suppressionEnabled" -NoteProperty!

$_.properties | Add-Member -NotePropertyName "enabled" -NotePropertyValue $true

$_.properties | Add-Member -NotePropertyName "alertRuleTemplateName" -NotePrope

$_.properties | Add-Member -NotePropertyName "templateVersion" -NotePropertyVal
Save correct kind under correct folder
if ($_.kind -eq "MLBehaviorAnalytics") { $_ | ConvertTo-Json -Depth 10 | Out-Fi
elseif ($_.kind -eq "Scheduled") { $_ | ConvertTo-Json -Depth 1@ | Out-File -Fo
elseif ($_.kind -eq "ThreatIntelligence") { $_ | ConvertTo-Json -Depth 10 | Out:
elseif ($_.kind -eq "MicrosoftSecurityIncidentCreation") { $_ | ConvertTo-Json
elseif ($_.kind -eq "Fusion") { $_ | ConvertTo-Json -Depth 10 | Out-File -Force
elseif ($_.kind -eq "NRT") { $_ | ConvertTo-Json -Depth 10 | Out-File -Force -F

else { $_ | ConvertTo-Json -Depth 10 | Out-File -Force -FilabP~+h "¢/ddicnT-uNgn

} Show on Github

4 G >

Transition Detecting MDE
from non- Device
Microsoft privileged Discovery -

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 22/23

https://github.com/HybridBrothers/Hybrid-Brothers-Blogs/blob/main/sentinel-using-bicep-and-powershell/get-ootb-analytic-rules.ps1
https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/

9/24/25, 10:33 PM Deploy sentinel analytic rules with bicep and PowerShell

Sentinel to Windows Improving
Defender Hello the

XDR - abuse monitored
Practical Introduction | network

challenges recently followed a page

live session of Dirk...

Introduction Introduction This
Microsoft Apr 26, 16 min blogpost is
announced on the... 2025 read probably the first ...
Jul 4, 2025 12 min read Mar 19, 6 min
2025 read

https://hybridbrothers.com/sentinel-using-bicep-and-powershell/ 23/23

https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/
https://hybridbrothers.com/
https://ghost.org/
https://hybridbrothers.com/privacy-policy/

