9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

o
D

8 min read

Microsoft Entra ID

Using Managed Identities in Logic
App HTTP triggers

@ Robbe Van den Daele
] Aug 3, 2023 « 8 min read

Photo by Kelly Sikkema / Unsplash

Introduction
Common HTTP trigger misconception

Switching to Managed Identities
Include Authorization Header

Disable SAS Authentication

Enable Managed Identity

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 1/22

https://hybridbrothers.com/tag/microsoftentraid/
https://hybridbrothers.com/author/robbe/
https://unsplash.com/@kellysikkema?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://unsplash.com/?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://hybridbrothers.com/
https://hybridbrothers.com/author/robbe/

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

Defining Authorization Policies

Allowing Multiple Identities

Error Codes

Debugging
Things to keep in mind

Conclusion

Introduction

During the past few months, I have been assessing the security
configurations of applications created in Azure. During these assessments,
I found that people like to use Logic Apps and HTTP triggers to create
simple APIs or integration flows. Often these HTTP triggers are being
called by other Azure resources, which is why they use Azure Managed
Identities for authentication to the Logic App HTTP endpoints. At least,
they think that they are using managed identities...

Common HTTP trigger
misconception

An Azure Logic App using an HTTP trigger supports two methods for

authenticating incoming calls, these are:

e SAS Tokens

e Azure AD OAuth

By default, an HTTP trigger will generate an URL that you can use to
access the trigger. What most people forget is that this URL contains a
SAS token by default. Since the default authentication method of the
HTTP trigger is SAS authentication, a lot of people are authenticating to
Logic Apps HTTP triggers via SAS tokens without knowing they are.

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 2/22

9/29/25, 11:37 PM

Using Managed Identities in Logic App HTTP triggers

Generate shared access signatures (SAS)

Every request endpoint on a logic app has gShared Access Signature (SAS) in the endpoint's URY which follows this

format:

https://<request-endpoint-URI>sp=<permissions>sv=<SAS-versionpsig=<signature>

Each URL contains the sp, sv, and sig query parameter as described in this table:

Query
parameter

sp

SV

Description

Specifies permissions for the allowed HTTP methods to use.

Specifies the SAS version to use for generating the signature.

sig

Specifies the signature to use for authenticating access to the trigger. This signature is generated by using the SHA256
algerithm with a secret access key on all the URL paths and properties. This key is kept encrypted, stored with the logic
app. and is never exposed or published. Your logic app authorizes only those triggers that contain a valid signature
created with the secret key.

Secure access and data - Azure Logic Apps | Microsoft Learn

When a HTTP request is received

HTTP GET URL

Request Body JSON Schema

https://prod-01.westeurope.logic.azure.com:443/workflows/438e77afacf... ‘ |E

{X

I

Method

Use sample payload to generate schema

GET v | X

Add new parameter A

The misconfiguration I often see in production environments, is when they

are triggering an HTTP trigger of a Logic App from another Azure

resource, they just set the Authentication method used of the source

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

3/22

https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-securing-a-logic-app?tabs=azure-portal&ref=hybridbrothers.com#generate-shared-access-signatures-sas

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

resource as Managed Identities without changing any other configuration.
As an example, I will use another Logic App that will send a HTTP request
to a Logic App with a HTTP trigger.

N

HTTP

*Method GET N
“URI https://prod-
01.westeurope.logic.azure.com:443/workflows/438s i il

L /triggers/manual/paths/invoke?api-version=2016-10-

018&sp=%2Ftriggers%2Fmanual%2Frunéisv="1.0&sig=Zf[4 "o

Headers Authorization Bearer X i
Enter key Enter value

Queries Enter key Enter value m

Body Enter request content

Cookie Enter HTTP cookie

Authentication mo X

* Authentication type | Managed identity N

*Managed identity System-assigned managed identity N

| Audience Enter audience

Since the URI still contains the SAS token, and the HTTP trigger in the
destination Logic App is configured to use SAS by default, the managed
identity configured in the Authentication field will not be used.
This makes people forget that the URI still is a confidential string, since
anyone with the default URI has the SAS token to authenticate
to the Logic App HTTP endpoint.

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

4/22

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

Switching to Managed
Identities

To really switch to using Managed Identities, we have to configure a couple

of things in the HTTP trigger of the destination Logic App.

Include Authorization Header

First of all, the request trigger or HTTP webhook needs to be configured to
include the authorization header (which will represent the Managed
Identity used in HTTP requests) in the triggers outputs. This can be done
by setting the IncludeAuthorizationHeadersInOutputs value to the
operationOptions field in the HTTP trigger. This can be done by using

the code view:

[> RunTrigger ~ i Designer : [@ Templates [Connectors ? Help (D Info Try Preview Designer

1 {

2 "definition": {

3 "$schema": "https://schema.management.azure.com/providers/Microsoft.Logic/schemas/2816-86-01/workflowdefinition.json#",
4 "actions": {

5 "Response": {

6 "inputs": {

7 "body": "@triggerOutputs()['headers']",
8 "statusCode": 20@

£l T,

10 "kind": "Http",

11 "runAfter": {3},

12 "type": "Response"

13 }

14 1

15 "contentVersion": "1.8.0.0",

16 "outputs": {},

17 "parameters": {},

18 "triggers": {

19 "manual": {

20 "conditions": [

21 {

22 "expression": "@startsWith(triggeroOutputs()?['headers']?['Authorization'], 'Bearer')"
23 }

24 1,

25 "inputs": {

26 "method": "GET",

27 "schema": {}

28 1,

29 "kind". “"Hitn"

30 "operationOptions”: "IncludeAuthorizationHeadersInOutputs”,
31 Type . "Request

32 }

33 }

34 s

35 “"parameters": {}

36}

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 5/22

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

"triggers": {
"manual”: {
"inputs": {
"schema": {}

¥

"kind": "Http",

"type": "Request",

"operationOptions": "IncludeAuthorizationHeadersInOutputs"

By doing this, we made sure that we can validate OAuth tokens when they

are being sent by source applications.

Disable SAS Authentication

To make sure SAS authentication cannot be used, we have to fiddle a little
bit with how these HTTP triggers work. In the Microsoft Docs we can read
that enabling OAuth authentication does not disable SAS authentication,

but using both will resolve in an error:

* An inbound call to the request endpoint can use only one authorization scheme, either Azure AD OAuth or Shared
Access Signature (SAS). Although using one scheme doesn't disable the other scheme, using both schemes at the
same time causes an error because Azure Logic Apps doesn't know which scheme to choose.

Secure access and data - Azure Logic Apps | Microsoft Learn

This means that if we only allow OAuth requests to trigger the HTTP
trigger, we can force that all SAS authentication requests fail. To do this,
we need to add the @startswith(triggerOutputs()?['headers']?

['Authorization'], 'Bearer') line to the trigger conditions in the
settings of the HTTP trigger:

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 6/22

https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-securing-a-logic-app?tabs=azure-portal&ref=hybridbrothers.com#considerations-before-you-enable-azure-ad-oauth

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

E When a HTTP request is received @ - Rename 10
HTTP GET URL https://prod-01.westeurope.logic.azure.com:443/workflows/438e77afacf... ‘ D (=] Add a comment
Request Body JSON Schema Testing (Preview) @
O r €63 Settings

Configure run after ®
@ Peek code

[i] Delete

Use sample payload to generate schema

Method GET N ‘ X

Add new parameter e ‘

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 7122

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

Settings for "When a HTTP request is received’

Custom Tracking Id
Set the tracking id for the run. For split-on this tracking id is for the initiating request.

Tracking Id

Secure Inputs
Secure inputs of the operation.

Secure Inputs

®) off

Secure Outputs

Secure outputs of the operation and references of output properties.

Secure Outputs

®) off

Suppress workflow headers
Limit Logic Apps to not include workflow metadata headers in the response.

Suppress headers

®) off

Concurrency Control

By default, Logic App instances run at the same time, or in parallel. This control changes how new runs are
queued and can't be changed after enabling.

To run as many parallel instances as possible, leave this control turned off. To limit the number of parallel
runs, turn on this control, and select a limit. To run sequentially, select 1 as the limit.

Limit
@) off

Schema Validation
Validate request body against the schema provided. In case there is a mismatch, HTTP 400 will be returned.

Schema Validation

@) off

Trigger Conditions

Specify one or more expressions which must be true for the trigger to fire.

‘ @startsWith(triggerOutputs()?['headers’]?['Authorization'], ‘Bearer’) X

-+ Add

By doing this, we make sure that requests containing SAS tokens with or
without OAuth tokens will be rejected. This means that the new URI
you will need to use in the application that is sending requests,

is the URI with the sy and sig parameters omitted.

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

8/22

9/29/25, 11:37 PM

Using Managed Identities in Logic App HTTP triggers

https://<request-endpoint-URI>sp=<permissions>

A4

HTTP

* Method

*URI

Headers
Queries

Body

Cookie

* Authentication type
*Managed identity

Audience

Authentication

GET A4
https://prod-
01.westeurope.logic.azure.com:443/workflows/438a " "t ikd

< /triggers/manual/paths/invoke?api-version=2016-10-
018&sp=%2Ftriggers%2Fmanual%2Frun
Enter key Enter value i
Enter key Enter value m
Enter request content
Enter HTTP cookie

m X

Managed identity A4
System-assigned managed identity N

Enter audience

Enable Managed Identity

Before we proceed, we will need to enable a Managed Identity for the Logic

App that will be sending requests to the HTTP Endpoint. This can be either

a User Assigned Managed Identity or a System Assigned Managed

Identity.

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

9/22

9/29/25, 11:37 PM

‘ L Search

-2 Overview

Activity log

fq Access control (IAM)
€ Tags

&2 Diagnose and solve problems

Development Tools

2. Logic app designer
</> Logic app code view
2 Versions
&> APl connections

&4 Quick start guides

Settings

€32 Workflow settings
Authorization

@ Access keys

. Identity

«

Using Managed Identities in Logic App HTTP triggers

System assigned User assigned

A system assigned managed identity is restricted to one per resource and is tied to tf
identity is authenticated with Azure AD, so you don't have to store any credentials in

&) save X Discard O Refresh ;'{j Got feedback?

Status @
(off

Object (principal) ID ©
| 80960ce 1At it i

SN s I}

Permissions (D

l Azure role assignments

o This resource is registered with Azure Active Directory. The managed identity can be

Once this is done, the Managed Identity needs to be configured in the

Logic App that will be sending requests:

Authentication m X
* Authentication type | Managed identity ~
*Managed identity System-assigned managed identity N

Audience

Enter audience

..

Defining Authorization Policies

When using OAuth, the application owner is responsible for

configuring proper authorization conditions in the applications.

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

10/22

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers
Therefore, we still need to create authorization policies in the Logic App so
only known managed identities are able to authenticate to the HTTP
endpoint. These policies can be created by going to the 'Authorization' tab

in the Logic App:

logic-httptrigger-prod-westeurope-001 | Authorization

Logic app @ Directory: SecSensus

‘/O Search ‘ « &l save X Discard

A

-, Overview
Azure Active Directory Authorization Policies

& Activity log
A Access control (IAM) Add policy
€ Tags

&2 Diagnose and solve problems

Development Tools

<7+ Logic app designer
</> Logic app code view
& Versions

&> API connections

&4 Quick start guides

Settings

€3 Workflow settings
Authorization

@ Access keys

» Identity

il Properties

B Locks

Monitoring

BN Alerts

41 Metrics

Diagnostic settings

Here we need to define policies that checks if certain Claims in the tokens

are valid. For single-tenant applications, the following Claims should be

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

11/22

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

checked:

e Issuer Claim, which makes sure that only tokens issued by our
Entra ID tenant are allowed to access the trigger:

https://sts.windows.net/<tenantid>/ .

e The Audience Claim, which checks the intended consumer of the
token. For Managed Identities this should be

https://management.azure.com/ .

e The appid Claim, which is the App ID of the Enterprise
Application of the Managed Identity used by the sending Logic
App (can be found by searching the name of the Managed Identity

in Azure AD)
| £ logic-httptrigger-prod-westeurope-001 X
Users Groups
No results. No results.
Devices App registrations
No results. No results.
Enterprise applications Roles

: . No results.
(Hel |ogic-httptrigger-prod-westeurope-001 91afe262-6b75-4d1..

Administrative units

No results.

Showing results from the SecSensus Azure Active Directory tenant

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 12/22

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

Properties

Name O
‘ logic-httptrigger-prod-west... Dj‘

Application ID @
| 91afe262-6bf5-4d1d-97c9-... [

ObjectID
\ 80960ce1-8c62-4a92-8e7e-... M \

e The appidacr Claim, which checks that authentication of the
Managed Identity is done via Client Certificates. This should have

the value 2 .

The complete policy should be something like the following:

Policy name * ‘ UAMI Policy ‘ |

Policy type * ‘ AAD v ‘

Claims
‘ Issuer v ‘ ‘ https://sts.windows.net/30aafeef-luifa L7 ‘ Til]
‘ Audience v ‘ ‘ https://management.azure.com/ ‘ T
‘ appid ‘ ‘ 91afe262-6bt .4 ST, ‘ T
‘ appidacr ‘ ‘ 2 ‘ T

By configuring this policy, we make sure that only tokens issued by our
tenant are allowed, only managed identities authenticated via Client

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

13/22

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers
Certificates are authorized, and only the Managed Identity with the
configured Application ID is authorized for the HTTP trigger.

Reference: Secure access and data - Azure Logic Apps | Microsoft Learn

When you now test the request, only the Logic App with the configured
Managed Identity should be allowed to access the destination Logic App

with the configured Authorization policies.

Allowing Multiple Identities

Allowing multiple identities to your Logic App trigger can be done using
various ways. The most easy one is to configure the source
applications to use the same User Assigned Managed Identity,
and allow that UAMI in your Authorization Policy.

Another way of doing it is by creating multiple Authorization
policies. When a token complies with one of the multiple configured
policies, the token will pass the authorization process (there is an or
relationship between the policies). The only thing you have to change in

the new policy is the appid of the new Managed Identity.

Error Codes

When testing unauthorized access, you should run into the following Error
Codes:

e When configuring a request without a Managed Identity but with
the SAS token URI, you should get the error code like described

below.

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 14/22

https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-securing-a-logic-app?tabs=azure-portal&ref=hybridbrothers.com#enable-azure-ad-oauth-for-your-consumption-logic-app-resource

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

HTTP

*Method GET v

*URI https://prod-

01.westeurope.logic.azure.com:443/workflows/438s @ el nia. . A
MO0/ triggers/manual/paths/invoke?api-version=2016-10-
018&sp=%2Ftriggers%2Fmanual%2Frundisv="1.08sig=7fBles S5 I iy Dt)

s

-..III SiFre

Headers Enter key Enter value m
Queries Enter key Enter value i
Body Enter request content
Cookie Enter HTTP cookie
Add new parameter 7
{
"error": {
"code": "InvalidTemplate",
"message": "The template language expression evaluation failed: 'The template 1:
}
}
4 D 4

e When configuring a request with the SAS token and a Managed
Identity (being the wrong or correct identity), you should get the

error code like described below.

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 15/22

9/29/25, 11:37 PM

Using Managed Identities in Logic App HTTP triggers

4
HTTP
*Method GET v
“URI https://prod-
01.westeurope.logic.azure.com:443/workflows/4384 ' L& & i LT B
= /triggers/manual/paths/invoke?api-version=2016-10-
018&sp=%2Ftriggers%2Fmanual%2Frun8isv="1.08sig=ZfBI == 4 -
I‘ | l!- I. h"I | I
Headers Enter key Enter value {m
Queries Enter key Enter value {m
Body Enter request content
Cookie Enter HTTP cookie
Authentication m X
* Authentication type | Managed identity v
*Managed identity System-assigned managed identity N
| Audience Enter audience
{
"error": {
"code": "InvalidTemplate",
"message"”: "The template language expression evaluation failed: 'The template 1:
}
}

4 G

e When configuring a request with the URI omitting the SAS token

but providing a wrong Managed Identity, you should get the error

code like described below.

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

9/29/25, 11:37 PM

Using Managed Identities in Logic App HTTP triggers

HTTP e
* Method GET v
*URI https://prod-

01.westeurope.logic.azure.com:443/workflows/43&= " plat T LE Ml 000 0 0
fe8/triggers/manual/paths/invoke?api-version=2016-10-
018&sp=%2Ftriggers%2Fmanual%2Frun&
Headers Enter key Enter value |
Queries Enter key Enter value T
Body Enter request content
Cookie Enter HTTP cookie
Authentication m X
' * Authentication type | Managed identity v
*Managed identity uami-http-trigger N
Audience Enter audience
{
"error": {
"code": "MisMatchingOAuthClaims",
"message”: "One or more claims either missing or does not match with the open ai
}
}

4 G

Debugging

What if you are facing other issues, or want to check which Claims are

present in the tokens you are sending? I will tell you how I debugged some

of my issues.

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

First of all, I made sure to return the Header of the request in the body of

the response when an authentication attempt succeeds:

When a HTTP request is received

HTTP GET URL

https://prod-01.westeurope.logic.azure.com:443/workflows/438e77afacf... ‘ E

Request Body JSON Schema

{x

I

Use sample payload to generate schema

Method GET v | X
‘ Add new parameter e
N
Response
*Status Code 200
Headers Enter key Enter value T
Body Headers x
Add new parameter hd

Then, I created my Authorization policy as such that I only check the

Issuer claim. This should always work since the Managed Identity lives in

the same tenant as the Logic App (except if you are a hacker from another

tenant ;))

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

18/22

9/29/25, 11:37 PM

Using Managed Identities in Logic App HTTP triggers

Policy name * ‘ UAMI Policy ‘ fi
Policy type * ‘ AAD v ‘
Claims

‘ Issuer v ‘ ‘ https://sts.windows.net/30aafeef-b4fd-47e1-... ‘]

If this request works, you know that your issue resides in the Claim checks

you are doing in the Authorization policies. To check which claims you are

sending, you can now copy your Bearer token from the Sending Logic App

(since we responded in the listening Logic App with the received Header).

OUTPUTS

Show raw outputs

Status code

200

Headers

Key

Cache-Control
Pragma

Transfer-Encoding

Body
{

"Accept-Encoding”: "gzip,deflate”,

- »

Value

no-cache
no-cache

chunked v

M M 21
LR P LRI EUdES .

"User-Agent":

1 i
=TT,

"Authorization”: "Bearer eyJ@eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIngl

"azure-logic-apps/1.9, (workflow f77e599593al14fb7999

"x-ms-workflow-id": "f77eSaiia L il il
< Ny emie ctumanlbl£1l Aavcvared an = "OARERE11IRAQAATAIRICCACAN >V

. lOELC.azure.com ,

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

19/22

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

Now you can decode your Bearer token with jwt.io, and check the Claims
that are present. Using this, creating your Authorization policies should go

much easier.

Things to keep in mind

First of all, I would like to mention that SAS tokens are not perse bad. I
just want to create awareness since the URL that gets generated in an
HTTP trigger is in fact confidential, since it contains the SAS token for
authentication. This is something application developers need to keep in
mind. The URL should be kept in a safe place, or ideally, SAS tokens
should be dynamically loaded from an Azure Key Vault for example.
Anyone with the original URL generated in the HTTP trigger is

able to make calls to the trigger.

Secondly, using OAuth in Logic Apps is not a bulletproof solution. In the
Authorization policies there is no option to check for roles present an array
of roles, which means that you cannot build a mechanism for role-
based authorization. There is also no possibility to validate the
authenticity of the token by checking the signature in the Logic App
Authorization policies. This means (but I still have to test this), that
miscreated tokens might be able to pass the Authorization
policies since there is no check on the signature of the token. For
mission-critical APIs, it is better to use a Function App with a
programming language that supports a library for validating
OAuth tokens. This will make sure all the necessary checks can be done
and will be done like they are supposed to be done. Examples of Microsoft
authentication libraries can be found here: Microsoft identity platform

authentication libraries - Microsoft Entra | Microsoft Learn.

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 20/22

https://jwt.io/?ref=hybridbrothers.com
https://learn.microsoft.com/en-us/azure/active-directory/develop/reference-v2-libraries?ref=hybridbrothers.com
https://learn.microsoft.com/en-us/azure/active-directory/develop/reference-v2-libraries?ref=hybridbrothers.com

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

Lastly, I wanted to mention mitigating controls can also be used for
securing HTTP triggers. For example, you can use Azure API
Management or Access Controls to limit incoming calls by source IP. More

info on Secure access and data - Azure Logic Apps | Microsoft Learn.

Conclusion

In this blog post, you should have learned how to properly migrate your
Logic App with an HTTP trigger to use Azure OAuth instead of SAS tokens.
We used another Logic App for triggering the HTTP trigger Logic App, but
this process should be the same if you use other resources that support

Managed Identities or OAuth as authentication to HTTP triggers.

Transition Detecting MDE

from non- Device
Microsoft privileged Discovery -
Sentinel to Windows Improving
Defender Hello the

XDR - abuse monitored

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 21/22

https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-securing-a-logic-app?tabs=azure-portal&ref=hybridbrothers.com#restrict-inbound-ip-addresses
https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

Practical Introduction |

recently followed a

Cha“e“ges live session of Dirk...
Introduction ,
. Apr 26, 16 min
Microsoft
2025 read

announced on the...

Jul 4, 2025 12 min read

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/

network
page

Introduction This

blogpost is
probably the first ...

Mar 19, 6 min
2025 read

22/22

https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/
https://hybridbrothers.com/
https://ghost.org/
https://hybridbrothers.com/privacy-policy/

