
8 min read

Microsoft Entra ID

Using Managed Identities in Logic
App HTTP triggers

Robbe Van den Daele
Aug 3, 2023 • 8 min read

Photo by Kelly Sikkema / Unsplash

Introduction

Common HTTP trigger misconception

Switching to Managed Identities
Include Authorization Header

Disable SAS Authentication

Enable Managed Identity

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 1/22

https://hybridbrothers.com/tag/microsoftentraid/
https://hybridbrothers.com/author/robbe/
https://unsplash.com/@kellysikkema?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://unsplash.com/?utm_source=ghost&utm_medium=referral&utm_campaign=api-credit
https://hybridbrothers.com/
https://hybridbrothers.com/author/robbe/

Introduction
During the past few months, I have been assessing the security

configurations of applications created in Azure. During these assessments,

I found that people like to use Logic Apps and HTTP triggers to create

simple APIs or integration flows. Often these HTTP triggers are being

called by other Azure resources, which is why they use Azure Managed

Identities for authentication to the Logic App HTTP endpoints. At least,

they think that they are using managed identities...

Common HTTP trigger
misconception
An Azure Logic App using an HTTP trigger supports two methods for

authenticating incoming calls, these are:

SAS Tokens

Azure AD OAuth

By default, an HTTP trigger will generate an URL that you can use to

access the trigger. What most people forget is that this URL contains a
SAS token by default. Since the default authentication method of the

HTTP trigger is SAS authentication, a lot of people are authenticating to

Logic Apps HTTP triggers via SAS tokens without knowing they are.

Defining Authorization Policies

Allowing Multiple Identities

Error Codes

Debugging

Things to keep in mind

Conclusion

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 2/22

Secure access and data - Azure Logic Apps | Microsoft Learn

The misconfiguration I often see in production environments, is when they

are triggering an HTTP trigger of a Logic App from another Azure

resource, they just set the Authentication method used of the source

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 3/22

https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-securing-a-logic-app?tabs=azure-portal&ref=hybridbrothers.com#generate-shared-access-signatures-sas

resource as Managed Identities without changing any other configuration.

As an example, I will use another Logic App that will send a HTTP request

to a Logic App with a HTTP trigger.

Since the URI still contains the SAS token, and the HTTP trigger in the

destination Logic App is configured to use SAS by default, the managed
identity configured in the Authentication field will not be used.

This makes people forget that the URI still is a confidential string, since

anyone with the default URI has the SAS token to authenticate
to the Logic App HTTP endpoint.

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 4/22

Switching to Managed
Identities
To really switch to using Managed Identities, we have to configure a couple

of things in the HTTP trigger of the destination Logic App.

Include Authorization Header

First of all, the request trigger or HTTP webhook needs to be configured to

include the authorization header (which will represent the Managed

Identity used in HTTP requests) in the triggers outputs. This can be done

by setting the IncludeAuthorizationHeadersInOutputs value to the

operationOptions field in the HTTP trigger. This can be done by using

the code view:

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 5/22

By doing this, we made sure that we can validate OAuth tokens when they

are being sent by source applications.

Disable SAS Authentication

To make sure SAS authentication cannot be used, we have to fiddle a little

bit with how these HTTP triggers work. In the Microsoft Docs we can read

that enabling OAuth authentication does not disable SAS authentication,

but using both will resolve in an error:

Secure access and data - Azure Logic Apps | Microsoft Learn

This means that if we only allow OAuth requests to trigger the HTTP

trigger, we can force that all SAS authentication requests fail. To do this,

we need to add the @startsWith(triggerOutputs()?['headers']?

['Authorization'], 'Bearer') line to the trigger conditions in the

settings of the HTTP trigger:

"triggers": {
 "manual": {
 "inputs": {
 "schema": {}
 },
 "kind": "Http",
 "type": "Request",
 "operationOptions": "IncludeAuthorizationHeadersInOutputs"
 }
}

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 6/22

https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-securing-a-logic-app?tabs=azure-portal&ref=hybridbrothers.com#considerations-before-you-enable-azure-ad-oauth

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 7/22

By doing this, we make sure that requests containing SAS tokens with or

without OAuth tokens will be rejected. This means that the new URI
you will need to use in the application that is sending requests,
is the URI with the sv and sig parameters omitted.

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 8/22

https://<request-endpoint-URI>sp=<permissions>

Enable Managed Identity

Before we proceed, we will need to enable a Managed Identity for the Logic

App that will be sending requests to the HTTP Endpoint. This can be either

a User Assigned Managed Identity or a System Assigned Managed

Identity.

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 9/22

Once this is done, the Managed Identity needs to be configured in the

Logic App that will be sending requests:

Defining Authorization Policies

When using OAuth, the application owner is responsible for
configuring proper authorization conditions in the applications.

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 10/22

Therefore, we still need to create authorization policies in the Logic App so

only known managed identities are able to authenticate to the HTTP

endpoint. These policies can be created by going to the 'Authorization' tab

in the Logic App:

Here we need to define policies that checks if certain Claims in the tokens

are valid. For single-tenant applications, the following Claims should be

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 11/22

checked:

Issuer Claim, which makes sure that only tokens issued by our

Entra ID tenant are allowed to access the trigger:

https://sts.windows.net/<tenantid>/ .

The Audience Claim, which checks the intended consumer of the

token. For Managed Identities this should be

https://management.azure.com/ .

The appid Claim, which is the App ID of the Enterprise

Application of the Managed Identity used by the sending Logic

App (can be found by searching the name of the Managed Identity

in Azure AD)

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 12/22

The appidacr Claim, which checks that authentication of the

Managed Identity is done via Client Certificates. This should have

the value 2 .

The complete policy should be something like the following:

By configuring this policy, we make sure that only tokens issued by our

tenant are allowed, only managed identities authenticated via Client

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 13/22

Certificates are authorized, and only the Managed Identity with the

configured Application ID is authorized for the HTTP trigger.

Reference: Secure access and data - Azure Logic Apps | Microsoft Learn

When you now test the request, only the Logic App with the configured

Managed Identity should be allowed to access the destination Logic App

with the configured Authorization policies.

Allowing Multiple Identities

Allowing multiple identities to your Logic App trigger can be done using

various ways. The most easy one is to configure the source
applications to use the same User Assigned Managed Identity,

and allow that UAMI in your Authorization Policy.

Another way of doing it is by creating multiple Authorization
policies. When a token complies with one of the multiple configured

policies, the token will pass the authorization process (there is an or

relationship between the policies). The only thing you have to change in

the new policy is the appid of the new Managed Identity.

Error Codes

When testing unauthorized access, you should run into the following Error

Codes:

When configuring a request without a Managed Identity but with

the SAS token URI, you should get the error code like described

below.

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 14/22

https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-securing-a-logic-app?tabs=azure-portal&ref=hybridbrothers.com#enable-azure-ad-oauth-for-your-consumption-logic-app-resource

 

{
 "error": {
 "code": "InvalidTemplate",
 "message": "The template language expression evaluation failed: 'The template la
 }
}

When configuring a request with the SAS token and a Managed

Identity (being the wrong or correct identity), you should get the

error code like described below.

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 15/22

 

{
 "error": {
 "code": "InvalidTemplate",
 "message": "The template language expression evaluation failed: 'The template la
 }
}

When configuring a request with the URI omitting the SAS token

but providing a wrong Managed Identity, you should get the error

code like described below.

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 16/22

 

{
 "error": {
 "code": "MisMatchingOAuthClaims",
 "message": "One or more claims either missing or does not match with the open au
 }
}

Debugging

What if you are facing other issues, or want to check which Claims are

present in the tokens you are sending? I will tell you how I debugged some

of my issues.

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 17/22

First of all, I made sure to return the Header of the request in the body of

the response when an authentication attempt succeeds:

Then, I created my Authorization policy as such that I only check the

Issuer claim. This should always work since the Managed Identity lives in

the same tenant as the Logic App (except if you are a hacker from another

tenant ;))

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 18/22

If this request works, you know that your issue resides in the Claim checks

you are doing in the Authorization policies. To check which claims you are

sending, you can now copy your Bearer token from the Sending Logic App

(since we responded in the listening Logic App with the received Header).

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 19/22

Now you can decode your Bearer token with jwt.io, and check the Claims

that are present. Using this, creating your Authorization policies should go

much easier.

Things to keep in mind
First of all, I would like to mention that SAS tokens are not perse bad. I

just want to create awareness since the URL that gets generated in an

HTTP trigger is in fact confidential, since it contains the SAS token for

authentication. This is something application developers need to keep in

mind. The URL should be kept in a safe place, or ideally, SAS tokens

should be dynamically loaded from an Azure Key Vault for example.

Anyone with the original URL generated in the HTTP trigger is
able to make calls to the trigger.

Secondly, using OAuth in Logic Apps is not a bulletproof solution. In the

Authorization policies there is no option to check for roles present an array

of roles, which means that you cannot build a mechanism for role-
based authorization. There is also no possibility to validate the

authenticity of the token by checking the signature in the Logic App

Authorization policies. This means (but I still have to test this), that

miscreated tokens might be able to pass the Authorization
policies since there is no check on the signature of the token. For

mission-critical APIs, it is better to use a Function App with a
programming language that supports a library for validating
OAuth tokens. This will make sure all the necessary checks can be done

and will be done like they are supposed to be done. Examples of Microsoft

authentication libraries can be found here: Microsoft identity platform

authentication libraries - Microsoft Entra | Microsoft Learn.

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 20/22

https://jwt.io/?ref=hybridbrothers.com
https://learn.microsoft.com/en-us/azure/active-directory/develop/reference-v2-libraries?ref=hybridbrothers.com
https://learn.microsoft.com/en-us/azure/active-directory/develop/reference-v2-libraries?ref=hybridbrothers.com

Lastly, I wanted to mention mitigating controls can also be used for
securing HTTP triggers. For example, you can use Azure API

Management or Access Controls to limit incoming calls by source IP. More

info on Secure access and data - Azure Logic Apps | Microsoft Learn.

Conclusion
In this blog post, you should have learned how to properly migrate your

Logic App with an HTTP trigger to use Azure OAuth instead of SAS tokens.

We used another Logic App for triggering the HTTP trigger Logic App, but

this process should be the same if you use other resources that support

Managed Identities or OAuth as authentication to HTTP triggers.

Microsoft Defender portal for SecOps analysis and response

ft Defender XDR

Signals

Microsoft
Entra ID

Protection

Microsoft
Defender
for Cloud

Microsoft
Entra ID

osoft
der for
ntity

emises
S and
 FS

Microsoft
Defender for
Cloud Apps

Third-party
SaaS and
PaaS apps

Other SaaS
and PaaS

apps

Microsoft
Defender for

Office 365

Microsoft
365

Microsoft
Defender for

Endpoint

Endpoints
(devices) with

Intune

Microsoft
Defender for

IoT

Microsoft
Defender

Vulnerability
Management

Microsoft
Defender

Threat
Intelligence

Microsoft
Security
Copilot

Azure Services
SQL
Storage
Network Traffic
Industrial IoT
Azure App Services
Azure Arc-enabled
resources

Server VMs
Azure Storag
Azure DNS
Azure Resou
Manager
Azure Key V
Azure App S

Multic

Third-pa
partn

SIEM data

Microsoft
Sentinel

Transition
from
Microsoft
Sentinel to
Defender
XDR -

Detecting
non-
privileged
Windows
Hello
abuse

MDE
Device
Discovery -
Improving
the
monitored

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 21/22

https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-securing-a-logic-app?tabs=azure-portal&ref=hybridbrothers.com#restrict-inbound-ip-addresses
https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/

Jul 4, 2025 12 min read

Apr 26,

2025

16 min

read

Mar 19,

2025

6 min

read

Practical
challenges
Introduction
Microsoft
announced on the…

Introduction I
recently followed a
live session of Dirk…

network
page
Introduction This
blogpost is
probably the first …

Hybrid Brothers © 2025

Powered by Ghost

Sign up Privacy policy

9/29/25, 11:37 PM Using Managed Identities in Logic App HTTP triggers

https://hybridbrothers.com/using-managed-identities-in-logic-app-http-triggers/ 22/22

https://hybridbrothers.com/transition-from-microsoft-sentinel-to-defender-xdr-practical-challenges/
https://hybridbrothers.com/detecting-non-privileged-windows-hello-abuse/
https://hybridbrothers.com/mde-device-discovery-improving-the-monitored-network-page/
https://hybridbrothers.com/
https://ghost.org/
https://hybridbrothers.com/privacy-policy/

